skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lokala, Usha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial Intelligence (AI) systems for mental healthcare (MHCare) have been ever-growing after realizing the importance of early interventions for patients with chronic mental health (MH) conditions. Social media (SocMedia) emerged as the go-to platform for supporting patients seeking MHCare. The creation of peer-support groups without social stigma has resulted in patients transitioning from clinical settings to SocMedia supported interactions for quick help. Researchers started exploring SocMedia content in search of cues that showcase correlation or causation between different MH conditions to design better interventional strategies. User-level Classification-based AI systems were designed to leverage diverse SocMedia data from various MH conditions, to predict MH conditions. Subsequently, researchers created classification schemes to measure the severity of each MH condition. Such ad-hoc schemes, engineered features, and models not only require a large amount of data but fail to allow clinically acceptable and explainable reasoning over the outcomes. To improve Neural-AI for MHCare, infusion of clinical symbolic knowledge that clinicans use in decision making is required. An impactful use case of Neural-AI systems in MH is conversational systems. These systems require coordination between classification and generation to facilitate humanistic conversation in conversational agents (CA). Current CAs with deep language models lack factual correctness, medical relevance, and safety in their generations, which intertwine with unexplainable statistical classification techniques. This lecture-style tutorial will demonstrate our investigations into Neuro-symbolic methods of infusing clinical knowledge to improve the outcomes of Neural-AI systems to improve interventions for MHCare:(a) We will discuss the use of diverse clinical knowledge in creating specialized datasets to train Neural-AI systems effectively. (b) Patients with cardiovascular disease express MH symptoms differently based on gender differences. We will show that knowledge-infused Neural-AI systems can identify gender-specific MH symptoms in such patients. (c) We will describe strategies for infusing clinical process knowledge as heuristics and constraints to improve language models in generating relevant questions and responses. 
    more » « less
  2. Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of 150k items (both posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adapt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task. 
    more » « less
  3. Analyzing gender is critical to study mental health (MH) support in CVD (cardiovascular disease). The existing studies on using social media for extracting MH symptoms consider symptom detection and tend to ignore user context, disease, or gender. The current study aims to design and evaluate a system to capture how MH symptoms associated with CVD are expressed differently with the gender on social media. We observe that the reliable detection of MH symptoms expressed by persons with heart disease in user posts is challenging because of the co-existence of (dis)similar MH symptoms in one post and due to variation in the description of symptoms based on gender. We collect a corpus of 150k items (posts and comments) annotated using the subreddit labels and transfer learning approaches. We propose GeM, a novel task-adaptive multi-task learning approach to identify the MH symptoms in CVD patients based on gender. Specifically, we adopt a knowledge-assisted RoBERTa based bi-encoder model to capture CVD-related MH symptoms. Moreover, it enhances the reliability for differentiating the gender language in MH symptoms when compared to the state-of-art language models. Our model achieves high (statistically significant) performance and predicts four labels of MH issues and two gender labels, which outperforms RoBERTa, improving the recall by 2.14% on the symptom identification task and by 2.55% on the gender identification task. 
    more » « less
  4. Background Web-based resources and social media platforms play an increasingly important role in health-related knowledge and experience sharing. There is a growing interest in the use of these novel data sources for epidemiological surveillance of substance use behaviors and trends. Objective The key aims were to describe the development and application of the drug abuse ontology (DAO) as a framework for analyzing web-based and social media data to inform public health and substance use research in the following areas: determining user knowledge, attitudes, and behaviors related to nonmedical use of buprenorphine and illicitly manufactured opioids through the analysis of web forum data Prescription Drug Abuse Online Surveillance; analyzing patterns and trends of cannabis product use in the context of evolving cannabis legalization policies in the United States through analysis of Twitter and web forum data (eDrugTrends); assessing trends in the availability of novel synthetic opioids through the analysis of cryptomarket data (eDarkTrends); and analyzing COVID-19 pandemic trends in social media data related to 13 states in the United States as per Mental Health America reports. Methods The domain and scope of the DAO were defined using competency questions from popular ontology methodology (101 ontology development). The 101 method includes determining the domain and scope of ontology, reusing existing knowledge, enumerating important terms in ontology, defining the classes, their properties and creating instances of the classes. The quality of the ontology was evaluated using a set of tools and best practices recognized by the semantic web community and the artificial intelligence community that engage in natural language processing. Results The current version of the DAO comprises 315 classes, 31 relationships, and 814 instances among the classes. The ontology is flexible and can easily accommodate new concepts. The integration of the ontology with machine learning algorithms dramatically decreased the false alarm rate by adding external knowledge to the machine learning process. The ontology is recurrently updated to capture evolving concepts in different contexts and applied to analyze data related to social media and dark web marketplaces. Conclusions The DAO provides a powerful framework and a useful resource that can be expanded and adapted to a wide range of substance use and mental health domains to help advance big data analytics of web-based data for substance use epidemiology research. 
    more » « less